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Abstract. Locality conditions for hidden-variables descriptions of the Bohm-EPR thought 
experiment are shown to be unnecessary as the underlying structure is already local. An 
objective, local hidden-variables theory is given. 

1. Introduction 

Ever since the genesis of quantum mechanics there has been much debate over the 
metaphysics required by such a theory and over the necessity of the form of this 
empirically successful theory (as much as one exists). Specifically, three aspects of 
the metaphysics implicit and explicit in the pre-quantum physics were brought into 
question: objectivity-the existence of matter and its physical properties independent 
of observation, locality-the requirement that there be no action at a distance, and 
determinism-the notion that, given the state of the universe at any time, all subsequent 
states can be predicted with certainty. Locality requires some explanation, partly 
because of the poor nomenclature. What is required in a local theory is that space-time 
be divisible into regions between which no signal travelling at or below the speed of 
light may pass. Such regions are said to be separated in a space-like manner. The 
consequence of this requirement that is of interest here is that nothing that happens 
in a region of space-time can influence events in those regions from which that region 
is space-like separated. The formulation of the non-relativistic quantum theory 
obviously violates the principle of locality, with the concept of wave-packet collapse 
in measurement, and also casts doubt upon objectivity and determinism because it 
only describes the outcomes of measurements and then only in a statistical way. This 
led to the positivistic ‘Copenhagen interpretation’ whose leading proponent Bohr, 
claimed that ‘the quantum of action entails. . . the necessity of a final renunciation 
of the classical ideal of causality and a radical revision of our attitude towards the 
problem of physical reality’ (Bohr 1935, p 697). 

Einstein, Podolsky, and Rosen (EPR) (1935), however, argued that there was no 
clear need to change our metaphysics but rather that it was the quantum theory itself 
which was causing the difficulties. They did this by requiring that a theory of physics 
should provide a description of all the physical properties of a system. Quantum 
mechanics clearly does not satisfy this condition if we accept that all theoretically 
(though not necessarily simultaneously) measurable properties have an objective 
existence. This led EPR to the conclusion that the quantum description of nature is 
incomplete. Thus it appeared that by supplementing the quantum theory with extra, 
so-called ‘hidden-variables’, a theory which was compatible with at least some of the 
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above principles could be formulated. Objectivity and locality were given priority in 
this quest as many regarded determinism as unnecessary and even undesirable. 

A thought experiment based upon the work of EPR, produced by Bohm (1951), 
became central to the development of the discussion of hidden-variables theories. 
Bohm considered two spin-half particles produced in the singlet state which were 
then separated without disturbing their spins. Any measurement of the spin of one 
of these particles will enable us to predict the component of spin in the same direction 
for the other particle. But we may also measure the component of spin of this second 
particle in any other direction. Therefore, if we accept objectivity and locality a 
spin-half particle must have at least two definite components of spin. Quantum 
mechanics cannot fully describe this. 

The next major step came with Bell (1964) showing that no deterministic, objective, 
local hidden-variables theory for the Bohm-EPR experiment could reproduce all the 
predictions of quantum mechanics for that experiment. This was followed by a series 
of papers by Clauser et af (1969), Bell (1971), and Clauser and Horne (1974) where 
the condition of determinism was dropped but the same conclusion was reached. It 
should be mentioned that only ergodic theories were considered by these authors 
although this was only done implicitly. 

2. Constraints on the hidden variables 

The method employed was to consider the hidden variables to be distributed over 
any set of values but with a fixed distribution function. These hidden variables were 
considered as being objective properties of the entire particle-measuring device system. 

Expectations of the outcomes of experiments were defined as being the integral 
(or sum for discrete cases) of the products of the conditional expectations and the 
distribution function, where limits upon the conditional expectations had been derived 
in line with the other metaphysical conditions placed upon the system. Inequalities 
involving the expectations were then derived which were shown to be violated in some 
cases by the quantum expectations. It is the limits placed upon the conditional 
expectations that are of most interest here. 

To see how these were formulated let us examine the structure upon which they 
were imposed. In doing so, an idealised version of the Bohm-EPR experiment will be 
employed. We consider only those situations in which both particles enter the analysers 
and that the analysers accurately record the components of spin which are being 
measured. Thus any indeterminacy in the conditional expectations must arise from 
the period of interaction between the two particles, which is assumed to cease before 
they enter the analysers-this is the locality requirement. Clearly, if a hidden-variables 
theory could be shown to give the same predictions as quantum mechanics in this 
case then any generalisation to the non-ideal case would not introduce discrepancies 
between the two. 

Let us denote the hidden variables by A. These are distributed over the set A with 
frequency !(A). Also, let the outcomes of measurements be denoted by A, and Bb 
where the upper case letter refers to the measuring device and the subscript gives the 
direction of measurement. Then 

+1 spin-up recorded in  direction u ( b )  
= (-1 spin-down recorded in direction u ( b ) .  (1) 
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The expectations are related to the conditional expectations by 

E[& (Bb)] = 1, E[& (Bb)IA I f ( A  dA 

and 

E[A,Bbl=1~E[A=BblAlf(A) dh. 

These conditional expectations are further related by 

E [AaBb / A  I = a IA ]E[Bb / A  I -t COV [ A  a, Bb IA I 
where cov [A,, BblA] is the conditional covariance. 

Since the particles were prepared in the singlet state we have 

B, = -A, = A - ,  

thus (using (1) and substituting into (3))  

E[A,B-,lhI=E[A,lhIE[AalhI+ V[A,IAI 

(4) 

= 1  ( 5 )  

where, by definition, the conditional variance, V[A,IA], is equal to cov [A,, A,lA]. 
This is the most general structure for an ergodic, objective hidden-variables theory. 

lEIAa(Bb)lA]l= 1, and V[A,(Bb)lh]=O (6 )  

which is consistent with ( 5 ) .  Also we have the general result from probability theory 
that 

For a deterministic theory we require that 

Suppes and Zanotti (1976) first proved that (8) is a sufficient condition for determin- 
ism, however (using ( 5 ) )  we can easily see that this is so. 

Equation (8) is, oddly enough, precisely what Bell (1964, 1971) and Clauser et a1 
(1969) required of a hidden-variables theory for it to be local, not deterministic. 
Recently Selleri and Tarozzi (1980), and Garuccio and Rapisarda (1981) have shown 
that (8) is in fact not required of a local probabilistic theory but this only poses the 
question of what condition is necessary. The answer is easily provided by an example 
from the macroscopic world. Suppose we take a sample of children and measure their 
ages and their heights. There is no question of one of these measurements influencing 
the outcome of the other measurement for any individual. This requirement of 
independent measurements is exactly that which we desire of a local theory. However, 
in analysing the data thus obtained for any subset of this group (say redheads) the 
equations used would be exactly those given in (2) and (3) without any extra require- 
ments to meet locality. Thus these equations are inherently local and locality conditions 
are ‘red herrings’. The only equations needed to be satisfied by an objective, local 
hidden-variables theory of the Bohm-EPR experiment are (1)-(4) and (7). 
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3. A hidden-variables theory 

Is it then possible to construct such a theory? The answer is yes and one will be given. 
The necessity and uniqueness of the theory will not be considered here as our aim 
is merely to show what is possible. 

Let us consider that spin-half particles do have a definite direction of spin, U, 
where U is a unit vector. Further consider that a measurement of the spin disturbs 
it so that the spin after the measurement points in the direction for which it gave a 
positive value. That is 

a + A , a  (9) 

where a is the unit vector in the direction of measurement. 
Now we have to find some form for the conditional expectations. Quantum 

mechanics predicts that the expectation for a particle measured in the direction b, 
given that the spin has been measured as up in the direction a, is 

E[AblA, = 13 = (I * b. 

E[A,la] = U U. (11) 

(10) 

Given (9) and (10) we propose that the conditional expectation for a single particle 
be. given by 

Using ( 5 )  and given that all the vectors are of unit length, the conditional variance 
becomes 

(12) 
We can always choose our coordinates such that 

u = k  u = s i n d  cos$i+s ind  sin$j+cosdk. (13) 

2 V [ A , ~ U ] =  1 -(U * U )  = /U 

If we require U to be distributed uniformly over all possible values, the expectation 
is given by . .n ." 

1 
E[A,] = ;?;; J, d 4  J d$ sin 4 cos 4 

-" 

= O  (14) 
Thus we are in agreement with quantum mechanics in the one-particle case. 

anti-correlated, that is 
For the Bohm-EPR experiment, we require that the spins of the two particles be 

UA = -UB =U. (15) 
A successful hidden variables theory must agree with the quantum expectation which 
is 

(16) E[A,Rb] = -U * b = -COS 8 

where 8 is the small angle between U and 6.  Thus (using (2) and (3)) 

J dd  J d$ cov [A,, Bblw] sin 4 
4.rr 0 -" 

2 = -3 COS e 
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where the coordinates have been chosen to satisfy (13) and give 

b = sin e1 +cos e&. (18) 
To find the conditional covariance we write it in the following way 

COV [A,, Bb la] = P (Am Bb, X U I I@ X b I (19) 
where p is the correlation coefficient. The simplest correlation coefficient is one which 
depends on 8 only. Using (1 3), (1 7), (1 8) and (1 9) this gives 

(20) p ( e )  = -2 COS e / 3 ~ ( e )  

where 
W 1 "  

F ( 8 )  = lo dq5 d 4  [ 1 - (sin 8 sin q5 cos rl, +cos 8 cos q5)']*'' sin' q5. 
--II 

All that remains to be shown is (from (7) and (19)) that lp(8)I s 1. Unfortunately the 
integral in (20) is elliptic but it has been solved numerically and the results are shown 
in figure 1. This final condition is clearly satisfied. 

Iradiansl 

Figure 1. Graph showing results of numerical solution of the integral in equation (20). 

The conditional probabilities for the one- and two-particle cases are given by 

P [ A ,  = a I u ]  = $(1+ cxu * U ) ,  P[Bb = PIU] = $(l -pa * b ) ,  (21) 
and 

P [ A ,  = a  flBb =Pla]=P[A. =alu]P[Bb =Plcr]+&P cov[A,,Bbla], 

where a, p E {-1, 1). It should be noted that given U and its (unquestionably feasible) 
distribution and equations (14) and (16) a theorem by Kolmogorov (1933) ensures 
that the conditional expectations and probabilities exist and are unique. Our choice 
of the dependence of the correlation coefficient is therefore vindicated. 
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This hidden-variables theory has several notable features. Most importantly it 
embodies two of the ideas which the introduction of quantum mechanics led us to 
consider. Firstly there is indeterminancy and secondly we have the notion of the 
measuring device disturbing the system, albeit in a predictable fashion. On the other 
hand, for the Bohm-EPR type experiments there is no need to reject the pre-existing 
ideas of reality and locality. Also, by introducing a hidden variable we have not 
ascribed a new physical property to the system but merely reaffirmed that we cannot 
simultaneously measure all the properties of the system. That is, we cannot measure 
the initial direction of the spin but only its post-measurement direction. 
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